Things used in this project

Hardware components:
Photon new
Particle Photon
×1
DS18B20
×1
Mfr 25fbf52 4k75 sml
Resistor 4.75k ohm
×1
12002 04
Breadboard (generic)
×1
11026 02
Jumper wires (generic)
×1
Adafruit industries ada1008 image 75px
Alligator Clips
optional but easy to fix the sensor
×1
Software apps and online services:
Q8wtlimqnp04fzhtr9v5
IFTTT Maker service
Trigger with E-Mail if threshold is reached
Blynk logo avatars
Blynk
stay informed with the measured values by using Blynk-Widgets

Code

changed Particle-Example from Maker KitC/C++
#include <blynk.h>
#include <OneWire.h>

/************************************************************************
This sketch reads the temperature from a 1-Wire device and then publishes
to the Particle cloud. From there, IFTTT can be used to log the date,
time, and temperature to a Google Spreadsheet. Read more in our tutorial
here: https://docs.particle.io/tutorials/topics/maker-kit

Temperature is read from: DS18S20, DS18B20, DS1822, DS2438

Expanding on the enumeration process in the address scanner, this example
reads the temperature and outputs it from known device types as it scans.

I/O setup:
These made it easy to just 'plug in' my 18B20 (note that a bare TO-92
sensor may read higher than it should if it's right next to the Photon)

A pull-up resistor is required on the signal line. The spec calls for a 4.7K.

************************************************************************

Rindfleisch	    englisch bis rosa	  medium	    well done (durch)
Filet	          38-55°C	            55-62°C	    ab 63°C
Lende/Roastbeef	38-55°C	            55-60°C	    ab 65°C
Rouladen	      --	                --	        70°C
Braten	        --	                --	        85-90°C
Tafelspitz	    --	                --	        90°C
Entrecoté	      --	                55-58°C	    --

************************************************************************/

// You should get Auth Token in the Blynk App.
// Go to the Project Settings (nut icon).
char auth[] = ">>>your code here<<<";

OneWire ds = OneWire(D4);  // 1-wire signal on pin D4
unsigned long lastUpdate = 0;
float lastTemp;

float temperature;
float temperature_threshold = 55.00; 
unsigned long lastmillis = 0;
#define vThresholdSlider V3


// *********    

    BLYNK_WRITE(vThresholdSlider)     // Blynk app WRITES Slider widget on V3
    {
    temperature_threshold = param.asInt();
    Serial.println("******************************");    
    Serial.print(temperature_threshold);    
    Serial.println(" C = new Temperature Threshold");    
    Serial.println("******************************");    
    }
    
// *********  

void setup() {
  Serial.begin(9600);
  Blynk.begin(auth);
}

void loop(void) {
Blynk.run();   
//    Blynk.virtualWrite(V4, humidity_threshold); 
//    !!! http://docs.blynk.cc/#troubleshooting-flood-error  
//    DO NEVER in LOOP!

            // update in 2 sec intervals
            if ((millis() - lastmillis) > 2000) {
                lastmillis = millis();
                readData();
            }
}


// up to here, it is the same as the address acanner
// we need a few more variables for this example

void readData() {
  byte i;
  byte present = 0;
  byte type_s;
  byte data[12];
  byte addr[8];
  float celsius, fahrenheit;

  if ( !ds.search(addr)) {
    Serial.println("No more addresses.");
    Serial.println();
    ds.reset_search();
    delay(250);
    return;
  }

  // The order is changed a bit in this example
  // first the returned address is printed

  Serial.print("ROM =");
  for( i = 0; i < 8; i++) {
    Serial.write(' ');
    Serial.print(addr[i], HEX);
  }

  // second the CRC is checked, on fail,
  // print error and just return to try again

  if (OneWire::crc8(addr, 7) != addr[7]) {
      Serial.println("CRC is not valid!");
      return;
  }
  Serial.println();

  // we have a good address at this point
  // what kind of chip do we have?
  // we will set a type_s value for known types or just return

  // the first ROM byte indicates which chip
  switch (addr[0]) {
    case 0x10:
      Serial.println("  Chip = DS1820/DS18S20");
      type_s = 1;
      break;
    case 0x28:
      Serial.println("  Chip = DS18B20");
      type_s = 0;
      break;
    case 0x22:
      Serial.println("  Chip = DS1822");
      type_s = 0;
      break;
    case 0x26:
      Serial.println("  Chip = DS2438");
      type_s = 2;
      break;
    default:
      Serial.println("Unknown device type.");
      return;
  }

  // this device has temp so let's read it

  ds.reset();               // first clear the 1-wire bus
  ds.select(addr);          // now select the device we just found
  // ds.write(0x44, 1);     // tell it to start a conversion, with parasite power on at the end
  ds.write(0x44, 0);        // or start conversion in powered mode (bus finishes low)

  // just wait a second while the conversion takes place
  // different chips have different conversion times, check the specs, 1 sec is worse case + 250ms
  // you could also communicate with other devices if you like but you would need
  // to already know their address to select them.

  delay(1000);     // maybe 750ms is enough, maybe not, wait 1 sec for conversion

  // we might do a ds.depower() (parasite) here, but the reset will take care of it.

  // first make sure current values are in the scratch pad

  present = ds.reset();
  ds.select(addr);
  ds.write(0xB8,0);         // Recall Memory 0
  ds.write(0x00,0);         // Recall Memory 0

  // now read the scratch pad

  present = ds.reset();
  ds.select(addr);
  ds.write(0xBE,0);         // Read Scratchpad
  if (type_s == 2) {
    ds.write(0x00,0);       // The DS2438 needs a page# to read
  }

  // transfer and print the values

  Serial.print("  Data = ");
  Serial.print(present, HEX);
  Serial.print(" ");
  for ( i = 0; i < 9; i++) {           // we need 9 bytes
    data[i] = ds.read();
    Serial.print(data[i], HEX);
    Serial.print(" ");
  }
  Serial.print(" CRC=");
  Serial.print(OneWire::crc8(data, 8), HEX);
  Serial.println();

  // Convert the data to actual temperature
  // because the result is a 16 bit signed integer, it should
  // be stored to an "int16_t" type, which is always 16 bits
  // even when compiled on a 32 bit processor.
  int16_t raw = (data[1] << 8) | data[0];
  if (type_s == 2) raw = (data[2] << 8) | data[1];
  byte cfg = (data[4] & 0x60);

  switch (type_s) {
    case 1:
      raw = raw << 3; // 9 bit resolution default
      if (data[7] == 0x10) {
        // "count remain" gives full 12 bit resolution
        raw = (raw & 0xFFF0) + 12 - data[6];
      }
      celsius = (float)raw * 0.0625;
      break;
    case 0:
      // at lower res, the low bits are undefined, so let's zero them
      if (cfg == 0x00) raw = raw & ~7;  // 9 bit resolution, 93.75 ms
      if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms
      if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms
      // default is 12 bit resolution, 750 ms conversion time
      celsius = (float)raw * 0.0625;
      break;

    case 2:
      data[1] = (data[1] >> 3) & 0x1f;
      if (data[2] > 127) {
        celsius = (float)data[2] - ((float)data[1] * .03125);
      }else{
        celsius = (float)data[2] + ((float)data[1] * .03125);
      }
  }

  // remove random errors
  if((((celsius <= 0 && celsius > -1) && lastTemp > 5)) || celsius > 125) {
      celsius = lastTemp;
  }
  

  fahrenheit = celsius * 1.8 + 32.0;
  lastTemp = celsius;
  Serial.print("  Temperature = ");
  Serial.print(celsius);
  Serial.print(" Celsius, ");
  Serial.print(fahrenheit);
  Serial.println(" Fahrenheit");

  // now that we have the readings, we can publish them to the cloud
  String temperature = String(celsius); // store temp in "temperature" string
  Particle.publish("temperature_meat", temperature, PRIVATE); // publish to cloud
  
    if ((celsius) <= temperature_threshold) 
        {
        Serial.println("Celsius <= Threshold");
        }
      else
        {  
        Serial.println("Attention - Core Temperature from Meat is reached!");
        Particle.publish("temperature_meat", "Attention", PRIVATE); // triggers IFTTT
    }
  
  Blynk.virtualWrite(V0, temperature);
  Blynk.virtualWrite(V1, temperature);
  Blynk.virtualWrite(V2, temperature_threshold); 

}

Credits

Img 6554 3ywwumwxbh
Ingo Lohs

I am well over 40 years and come from the middle of Germany. You can contact me also in German. Donation for add sensors: paypal.me/ingolohs

Contact

Replications

Did you replicate this project? Share it!

I made one

Love this project? Think it could be improved? Tell us what you think!

Give feedback

Comments

Similar projects you might like

E-Paper Weather Display with Photon and IFTTT
Easy
  • 4,029
  • 19

Full instructions

Create a beautiful medium for weather information using Particle's cloud services and IFTTT.

2-Way Particle Photon Communication
Easy
  • 194
  • 4

Make two Particle Photons "talk" via the usage of webhooks!

WiFi Strength Meter
Easy
  • 469
  • 6

A meter that indicates the Wi-Fi signal strength in an intuitive way, using the parts I had on hand.

IFTTT - Enabled Sensors with Particle Photon
Easy
  • 727
  • 12

Full instructions

Connect any sensor to Particle Photon and use it to trigger an IFTTT action with just a few lines of code.

Light Detecting Email Sender
Easy
  • 228
  • 4

Full instructions

Receive an email about when the light is too strong on your device; nobody wants a heated device left directly under the sun. Photon + IFTTT

Internet-Connected Popcorn Popper
Easy
  • 164
  • 1

Full instructions

A hot air popcorn popper triggered via the Internet! (Built for the Bellingham Codes May event.)

Add projectSign up / Login